Читатель вправе спросить: на каком, собственно, основании я утверждаю о столь критическом положении теоретического знания? почему сформулированный мною парадокс (да и существует ли он реально вообще?) так насущен для современной математики, физики или логики? Все эти науки спокойно себе живут и развиваются (еще как развиваются – все же эпоха научно-технической революции), сталкиваются, конечно, с серьезными трудностями, преодолевают их или запутываются в них, но, судя по всему, творцы современной науки и не помышляют о необходимости включить в логический строй наличных теорий интуитивные процессы изобретения исходных теоретических понятий… У современных теоретиков по горло других, действительных забот.
Попробую все же показать, почему я отважился на такое сильное утверждение.
Начну с некоторых всеобщих логических трудностей, как будто независимых от современной ситуации, от логических коллизий XX века…
(1990). Ход моих рассуждений в этом параграфе носит несколько раздвоенный, еще недостаточно решительный характер. Я как будто колеблюсь между двумя подходами. То, исходя из – пусть уже поколебленного, но все же еще соблазнительного – отождествления разума только с разумом познающим, я пытаюсь как бы усовершенствовать логику познающего разума в свете логических сдвигов XX века. То, уже осознавая, что разум познающий – лишь один из голосов в полифонии человеческого разумения, я осмысливаю момент перехода, «трансдукции» познающего разума в разум диалогический и тем самым осмысливаю замыкание познающего разума «на себя», оформление этого разума, как действительно самостоятельного и неповторимого Собеседника в диалоге культур. Можно было бы эту неопределенность устранить, очистить мой текст от логических колебаний. Но мне кажется, это было бы неправильно. Сами эти колебания, сама двуполюсность приведенных размышлений также симптоматичны и даже необходимы, они свидетельствуют, что созревание культурологического статута логики – это трудный момент самой органики исторического движения мысли. Дальше читатель увидит, что «второй полюс» (идея сопряжения, диалога, взаимообоснования двух всеобще-особенных логик, двух форм актуализации бесконечно-возможного бытия) все более становится единственным средоточием последующего логического движения. Самым существенным должно быть соучастие познающего разума в единой полифонии логик XX века.
И содержательная, и формальная (аристотелевская и современная математическая) логика сходятся в одном очень существенном пункте. Обоснование начал (аксиом, исходных понятий…) логического движения не входит в задачу науки логики, особенно науки логики Нового времени.
В формальной логике аксиомы и исходные термины определяются или на основе интуитивной очевидности (классическая логика), или на основе интуитивно необходимых «конструктивных схем» (логика интуиционизма), или определения вообще становятся ненужными, поскольку аксиомы данной теории переформулируются как теоремы более фундаментальной теории (программа Гильберта), или регресс в дурную бесконечность обоснования отсекается в какой-то точке исторического возникновения данной теории (историческое оправдание, неизбежно связанное с теоремой Гёделя).
В содержательной (гегелевской) логике в той мере, в какой она толкуется именно как логика, а не как гносеология, также обычно отвлекаются от первоначального формирования исходных для данной теории, наиболее абстрактных понятий – это, дескать, дело познавательной эмпирии. Логически освоен только один «пробег» теоретического мышления: от «точки» возникновения теории до «точки» ее предельного развития – движение «от абстрактного к конкретному»[6], от бедного (одностороннего) понятия до развернутого единства многообразия (системы понятий). Конечно, и нижнюю и верхнюю «точки» можно превращать в многоточия и отодвигать в бесконечность. И тогда, с одной стороны, говорить о все большей абстрактности исходного пункта, вплоть до бессмысленного и абсолютного тождества «бытия и небытия» исследуемого предмета (это – вниз, в незнание). А с другой – рассуждать о все большей конкретности будущего теоретического знания, о том, что в сравнении с всемогуществом теории XXI века современное знание будет выглядеть бедной, неразличимой, неразвернутой, точечной абстракцией (это – вверх, в абсолютное знание)… Все это возможно. Но проблемы такое многоточие не снимает.
И прежде всего не снимает проблемы начала логического движения (вопроса, где начинается логика). По отношению к отдельным позитивно-научным теориям до поры до времени (до времени, когда становится необходимым их логическое осмысление) можно отделаться ссылкой на историческую данность исходного пункта (предположим, принципа инерции или галилеева принципа относительности), а далее следить за набиранием конкретности в последующем движении теоретической структуры, за логичностью воспроизведения – во все более конкретной форме – исходной понятийной абстракции (к примеру, понятия стоимости в «Капитале» Маркса). В анализе коренных превращений теории (перехода от одной теории к другой) могут – опять-таки до поры до времени – спасти ссылки на «новое экспериментальное открытие», «замыкание теории на факт», «вмешательство воображения, развитого в сфере искусства» или, наконец, на то, что это вообще не наше (логиков) дело…
По отношению к науке логики все эти ссылки спасти не могут.
Логично то, что обосновано логически. Если начало логического движения само логически не обосновано, оно не может быть логическим основанием всего последующего движения. Тогда говорить о логике невозможно не только в начальном пункте, но и вообще в целом, тогда такой штуки, как логика, вовсе не существует – ни в смысле действительной характеристики процесса мышления, ни в смысле науки логики.
Вряд ли изменят эту ситуацию оппортунистические надежды на то, что основания логического процесса можно взять на веру, или условиться об их аксиоматичности, или взять их просто как определения, но все же сохранить логичность за счет непререкаемости дедуктивных шагов самого вывода. Дескать, если основание окажется истинным, скажем эмпирически истинным, то железная логика умозаключений, или исчисления высказываний, обеспечит истинность вывода. Позвольте, но ведь тогда должно быть логически обоснованно само движение умозаключений, тогда логичность доказательства должна покоиться на каком-то основании, обоснованном логически? И так до бесконечности. Нет. Тут компромисса быть не может.
Тем более что имеется и другая трудность, некогда отмеченная П. Флоренским (в его статье «Космологические антиномии И. Канта»). Логически корректное мышление должно быть ясным и отчетливым, для чего «обязано» опираться на закон тождества. Только тогда, когда одно утверждение логически тождественно другому, из которого оно выведено или которое оно обусловливает, между ними нет логической щели, и связь суждений безупречна в логическом отношении. Но в этом случае доказательство абсолютно тавтологично и никакого смысла не имеет. Но оно не имеет и доказательной силы, поскольку каждое А должно иметь свою основу в не-А, в Б, иначе (в случае полной тождественности с предыдущим) суждение будет безосновательным, будет лишь декларативным утверждением, типа «А потому, что А…». Когда нельзя сказать «если А, то Б», но только – «если А, то… А», логики нет. Но логики нет и без такой тавтологичности, ибо тогда между А и Б появляется логическая щель, и вывод оказывается некорректным. Закон тождества в качестве гарантии логичности исключает закон достаточного основания, хотя оба они необходимые условия логического мышления. Для Флоренского эта ситуация (очень тонко им очерченная) означала неизбежность вывода о границах разума, о том, что исходное определение разума является его отрицанием.
В контексте наших рассуждений описанная ситуация очерчивает те предельные условия, в которых определение разума, логической обоснованности формулируется как проблема, как логическая трудность.
В самом деле, за законом тождества стоит абсолютная дискретность (прерывность) мысли: все рассуждения сводятся к одному неделимому и ни с чем не соединяемому, абсолютно себе-тождественному. За законом достаточного основания лежит абсолютная континуальность (непрерывность) мысли; необходимость постоянного отступления в дурную бесконечность обоснования. Если искать основания логичности данного суждения или понятия в другом суждении или понятии, обоснования не будет (регресс в дурную бесконечность). Если искать такое основание в самом данном суждении (понятии), то восторжествует полная тавтологичность, и никакого основания снова быть не может.
Для обоснования данного понятия необходимо иное понятие – этим иным должно быть (должно быть понято) само обосновываемое понятие – как понятие иной логики.
Таков категорический императив (и парадокс) логики.
Но не ужас перед ним («чур меня, чур, скорее прочь от всякой логики!») и не усталый компромисс («зачем искать абсолют, какая есть логика, такая пусть и будет, а абсолют поищем в других местах, вне логики, вне рассуждений…»), нет, понимание этого императива как проблемы, как логической трудности, как загадочного определения позитивной сущности мышления – путь работающего логика.
Таким путем и пошел Гегель. Диалектика Гегеля есть форма разрешения антиномии, превращения «загадки» в действительное логическое начало. В диалектическом тигле «это» понятие показывает свою способность быть иным. В понятии вскрывается внутреннее противоречие, и оно (понятие) оказывается способным быть и основанием и обоснованным. Понятие обосновывает себя своим развитием и в конечном счете обнаружением тождественности своего «абсолютного начала» и «абсолютного конца». Конечный пункт развития понятий оказывается обоснованием всего логического движения (выясняется, что этот пункт лежал и в самом начале движения). Гегель вскрыл, таким образом, реальное и очень существенное позитивное определение логического движения.
Но в гегелевском решении загадки было одно уязвимое место. Это решение годится или для отдельных позитивных теорий (для нефилософской науки), или для логики чисто гегелевского типа (логики абсолютного идеализма). Объяснимся.
Пока речь идет о логике развития отдельных теорий, гегелевская идея позволяет выявить внутреннюю связь основания и обоснованного и эвристически указывает на очень существенный момент: вся теория в целом логически обоснована, если она может быть понята (и логически изображена) как одно – начальное – понятие, развитое, конкретизированное, развернутое. Сама предельная развернутость (конкретность) понятия в форме теории и обосновывает исходное понятие (бедное, абстрактное), хотя и покоится на его (исходного понятия) основе. Понятие как единство многообразия (теория) обосновывается понятием как единством (тождеством) многообразия (понятием в исходном определении), и – обратно – понятие предмета обосновывается его теорией.
Возможности такого подхода для анализа логического содержания и историологического развития фундаментальных научных теорий, скажем механики на протяжении 200 – 300 лет или математики на протяжении 500 лет, громадны, хотя еще почти не реализованы. Правда, в физике или математике необходимо еще обнаружить за обычным дискурсивным текстом понятийную структуру теорий. В «Капитале» такая предварительная работа уже совершена и наличный текст готов для историологического анализа, для анализа взаимообоснования исходного понятия и развитой теории. Э.В.Ильенков в значительной мере осуществил такой анализ и дал четкую и убедительную картину диалектики как логики развития (и строения) одной научной теории.
Но вот перед исследователем встает вопрос о логике обоснования «логического начала» теории, если исходить из предположения (а такое предположение – историологический феномен), что данная теория не вечна и не абсолютна. У нее было начало («точка» возникновения) и есть завершение («точка» превращения в другую теорию). Тогда гегелевский подход разрушается, делается невозможным, тогда начало и конец теории уже не стоят в отношении «бедного исходного понятия» и «развитой теоретической формы этого же понятия». В «конце» теории возникает новое понятие – понятие новой теории, способное развернуться новым, более богатым, развитым, конкретным, но иным многообразованием. Вновь встали «друг против друга» понятие и понятие, один логический субъект (предмет понятия А) и другой логический субъект (предмет понятия В) как тождественные логические субъекты. Тогда гегелевское требование соотнести понятие с самим собой в форме начала и в форме предельной развитости (конкретности) оборачивается иным требованием: чтобы обосновать понятие, его необходимо соотнести с самим собой как с другим понятием – понятием другого логического субъекта, его необходимо парадоксально самообосновать.
Впрочем, в логике «Капитала» заложен и такой подход. Понятия «стоимость» и «прибавочная стоимость» – коренные понятия всей структуры «Капитала» – развиваются Марксом не только в контексте «понятие – теория», но и в контексте «понятие – понятие». В теории экономических отношений капитализма точкой отсчета служит не только «начало» (генезис), но и «пункт» превращения – социальная революция, где все развернутые конкретные отношения сворачиваются, сжимаются, преобразуются в элементарную ячейку новых отношений, нового общества и именно в этой точке понимаются.
Взятые в «момент» радикального превращения, экономические отношения капитализма осмысливаются так, что исходное для понятий «стоимость» и особенно «прибавочная стоимость» определение рабочего времени (как основы общественного богатства) оборачивается определением свободного времени (как основы всего общественного развития и как своего рода предопределения всех стоимостных отношений). Именно понятие свободного времени, которое носит в «Капитале» характер предпонятия, зародышевого, неразвитого определения будущих основ «общества самодеятельности» (Selbststätigheitgesellshaft), является глубинным логическим основанием и понятия «стоимости», и всей развернутой на этой основе теоретической системы. Не случайно итоговый анализ капиталистического производства дан в главе «основной закон капиталистического накопления», где как раз диалектика свободного и рабочего времени понята как основа всех отношений экономики капитализма, и в особенности как основа диалектики необходимого и прибавочного времени внутри времени рабочего.
Но ведь только такая постановка вопроса и является собственно логической. Здесь необходима логика, могущая обосновывать самое себя, то есть действительная логика, а не «полулогика» Гегеля… Чтобы оправдать такой странный тезис, вдумаемся в обозначенную ситуацию немного пристальнее.
Пока мы двигались в пределах одной теории, логическое и собственно теоретическое обоснование совпадали: речь шла о том, в какой мере данная теория может быть принята как развитие (и обоснование) исходного теоретического понятия. Строго говоря, для такой проверки и логиком не нужно быть. Работа эта, пускай интуитивно, осуществлялась каждым теоретиком. Но если речь идет о логическом отношении (основания и обоснованного, тождественности и нетождественности) между двумя понятиями различных теорий, то такой вопрос может быть решен только в пределах науки логики. Понятия (основания и обоснованного) взяты здесь в такой позиции, когда позитивно-теоретическая связь между ними невозможна, и, следовательно, обоснование здесь может быть дано только как логическое, исходящее из общих (всеобщих) логических отношений.
В точке превращения теорий нет «логики теории», но есть только (если есть) «теория логики». Именно эта ситуация нас и интересует.
Правда, в позитивном, научном развитии эту трудность возможно обойти при помощи двух компромиссов, двух способов избежать собственно логической постановки вопроса и тем самым спасти всеобщность гегелевской логики.
Первый компромисс возможен, когда теоретическая система «на подъеме», когда она интенсивно развивается, а «последней точки» (точки теоретических превращений) еще не видно и остро стоит вопрос только о начале теории, о ее исходном пункте. Тогда возможно отодвигать исходную точку до бесконечности (дескать, все предшествующие теории – лишь ослабленные варианты или стадии данной, подлинно «теоретической» теории). Можно и просто сослаться на эмпирическое происхождение ее начального пункта, а далее использовать собственно логический критерий. И что очень существенно, логический критерий будет здесь действовать безупречно (разумеется, в смысле гегелевской стратегии). Как бы ни возникло (или даже если вообще не возникло, а всегда было) исходное понятие, логика взаимообоснования этого понятия и его развитой формы работает без срывов. Понятие обосновывается своим развитием, а не происхождением, не формированием, а значит, вопрос «о начале теории до начала теории» совсем не страшен. Тогда можно быть оппортунистом и предположить, что исходное понятие возникло как угодно, скажем по «логике» формального обобщения (например, как у Локка), а вот развитие этого понятия (и, значит, его содержание, его логическая форма) строго определяется в рамках диалектического движения от абстрактного к конкретному.
Во-вторых, возможен и такой компромисс. Если смена теорий не носит радикального характера и не означает действительного преобразования коренных идеализаций (к примеру, понятие «материальной точки» или «потенциальной бесконечности» остается в XVII – начале XX века логической основой механики или математики во всем многообразии их вариантов), тогда трудности обходятся за счет бесконечного отодвигания (переформулировки) конечной точки данного теоретического развития. Тогда «концом» теории, обосновывающим ее начало (и обоснованным этим началом), выступает сама неопределенная развитость исходного понятия, возможность «сравнить» понятие с самим собой в разных формах: бедной и богатой, абстрактной и конкретной, самотождественной и многообразной. То, что это не абсолютный (гегелевский) конец, ничего не изменяет в логике обоснования. Существенна сама возможность сопоставления двух различных форм понятия, но вовсе не законченность, «закругленность» этих форм.
И в первом и во втором компромиссе открывается одна возможность: понятие обосновывает само себя (теоретик обосновывает понятие им же самим), не выходя за пределы данной логики, но только в разных формах ее реализации – то в форме себетождественного понятия, та в форме теории. В результате и овцы целы, и волки сыты. И логический императив выполняется, и нет выхода за пределы (данной) логики.
Но все эти компромиссы сразу же становятся невозможными (а гегелевское решение проблемы бессмысленным) в той предельной ситуации, когда превращение данной позитивной теории означает – одновременно – коренное превращение (преобразование) самой логики формирования (определения) понятий, самой логической возможности определить понятие.
Для Гегеля такого поворота проблемы не могло существовать. Абсолютное начало логики тождественно у Гегеля абсолютному «концу»; ничего радикально нового (логически нового, не заложенного имплицитно в данной логике) появиться в мышлении не может, знание тождественно самопознанию, выявлению и конкретизации того, что было сначала имплицитным и абстрактным.
Но такая концепция способна только обнаруживать неявную логику развития одной, бесконечно «длительной» теории; логика существует только как изнанка (и бесконечная экстраполяция) данного, наличного теоретического движения. Если же речь идет о возможном логическом превращении теории, то есть о необходимости обоснования (и критики) всей логики ее развития в целом, когда уже недостаточно того, что понятие проверяется теорией, а теория – понятием, а необходимо обосновать отношение «понятие – теория» в свете иного понятия, иной логики, тогда гегелевская логика отказывает, не «срабатывает». Она работает только на условиях абсолютного тождества мышления и бытия. Монологика (в смысле одна-единственная логика) – это синоним логики абсолютного идеализма. Она не может обосновывать самое логику, она может только разъяснять наличное теоретическое движение. Правда, для позитивной теории такое разъяснение не слишком нужно.
Итак, первое ограничение гегелевского решения (оно эффективно для понимания логики развития отдельной позитивной научной теории) – оборотная сторона второго ограничения (это решение имеет логический всеобщий смысл только в контексте гегелевской системы). В гегелевском «решении» основного парадокса логики была заключена возможность ослабить этот парадокс, лишить его собственно логической остроты.
В ситуации радикального (логического) «превращения теорий» от логики не укроешься ни бесконечностью теоретической «конкретизации», ни ссылками на практику познания.
(1990). Здесь все время говорится об обобщенной логике превращения теорий. Но недостаточно подчеркнуто, что в ХХ веке речь все же идет о схемах превращения особенных, нововременных форм теоретизирования. Как мне сейчас представляется (см. Второе введение), теоретическая составляющая мышления налична в любой культуре. Ее смысл – установить связи вещей, так сказать, «продольные», в их отстранении от связей «перпендикулярных» человеческому телу и духу, от связей, направленных на человека, или – от него. Так возникает возможность освободить силы самодетерминации и отсечь (отклонить, преломить, отразить, преобразовать…) связи «детерминации извне» – связи экономической, генетической, космической детерминации. В этом смысле теоретическая составляющая нашего мышления есть одно из оснований свободы и ответственности индивида и в конечном счете – личности. Но в каждой исторической культуре теоретическая составляющая направляется особой доминантой данного строя понимания.
В античности – доминантой эйдетического разума; в средние века – доминантой разума причащающего; в Новое время – доминантой познания.
В нашем тексте мы говорим не вообще о теории, а о теории особого типа, теории в доминанте разума познающего (в задаче: понять сущность вещей, как они есть сами по себе). Правда, исторически переход в диалогику мог произойти только в гносеологически ориентированной теории, доводящей до предела и выпрямляющей все историческое развитие (см. Гегель) теоретической мысли. Поэтому определение теорий «познающего разума», как обобщенного (именно – обобщенного!) типа до-диалогических теорий, все же не является ошибкой книги 1975 года. Другое дело, что в контексте развитой логики культуры существует взаимообратимая связь (взаимообоснование) любых теоретических структур – античной и нововременной; современной (канун XXI века) и античной и т.д. Но об этом собственно логическом (а не историческом) взаимообосновании речи пока еще нет.
Коль скоро речь идет именно о логике коренного преобразования теорий, а не об их происхождении, то хочешь не хочешь, но новой теории уже (просто феноменологически) предшествовала «старая» теория; определенная связь между ними уже есть, и ее необходимо «только» осмыслить (обосновать) логически. В такой ситуации практический критерий (к примеру, экспериментальная необходимость нового понятия) не замещает логического критерия (самообоснования), но сам должен быть понят логически.
А поскольку в переходе к новой теории должно быть оправдано (или отвергнуто) и исходное понятие «первичной» теории, то и практическое происхождение последней теперь должно быть представлено (переосмыслено) как логическое обоснование. Понятие, первоначально сформированное (или истолкованное) на путях формального индуктивного обобщения – возьмем этот банальный случай, – должно быть теперь понято как обоснованное совсем иной логикой, чем логика его эмпирического происхождения, должно быть обосновано логикой иного, нового (радикально нового, логически нового) понятия.
Возникает собственно логическая проблема. Необходимо возвращение «на круги своя». Пусть радикальное преобразование теории стало необходимым исторически (теория привела к выводам, противоречащим тем основаниям, из которых эти выводы были «дедуцированы»; караул, парадокс!). Но коль скоро это произошло, то вопрос встал строго логически: вся теория снова сжалась в исходное понятие, обращенное теперь на себя, взявшее себя под сомнение. Возникла проблема самообоснования этого понятия, его переопределения, его коренной трансформации. И такое обоснование (преобразование) может быть дано только в контексте науки логики, поскольку теоретическая дедукция из данного понятия сама поставлена под вопрос. Проблема начала теории непосредственно превратилась в проблему логического начала, начала логики.
…Продумав «изнутри» логические трудности и возможные компромиссы гегелевского «решения» логических парадоксов, мы вновь возвращаемся к категорическому императиву логики в его предельно бескомпромиссной, парадоксальной форме, но теперь это – форма парадокса творческого мышления. Резко возросла логическая конкретность «нашего» императива. Его смысл неожиданно получил историческое наполнение. Необходимость самообоснования понятий и суждений (помните, – иначе – антиномия между законом тождества и законом достаточного основания) теперь обернулась эвристическим требованием: логическое обоснование предполагает осмысление (во всеобще-логической форме) процесса перехода от старой теории к новой, процесса изобретения теорий.
Но ведь требование это – правда, пока еще без основания его радикально-всеобщего логического смысла – типичное дитя XX века, плод современной теоретической революции.
Мы начали с всеобщих логических трудностей, как будто независимых от современной логической ситуации. Сейчас начинает выясняться исторический смысл этой всеобщности. Весь поворот проблемы, преодоление ее мистичности отнюдь не наша заслуга. Это «заслуга» времени.
В XX веке одной из горячих точек в развитии науки оказались парадоксы теории множеств. Не входя сейчас в математические детали, обращу внимание на взрывную силу самой логической постановки вопроса.
В парадоксах теории множеств речь идет о возможности включения, к примеру, множества всех множеств, не являющихся собственными элементами, а число «подведомственных» этому определению множеств. Если это (бесконечное) множество есть элемент самого себя, то, значит… оно не является собственным элементом; если же оно не есть элемент самого себя (не является множеством, подпадающим под свое определение)… то именно тогда, и только тогда, оно является собственным элементом (7).
Вот этот парадокс в расхожей, полушутливой редакции, предложенной Расселом. Деревенский брадобрей должен брить тех, и только тех, жителей деревни, которые не бреются сами. Должен ли брадобрей брить самого себя? Если он будет себя брить, значит, он бреетея сам, а значит, он себя брить не имеет права. Но если он себя не будет брить, значит, он имеет право себя брить… Шутейный этот парадокс демонстрирует глубокую парадоксальность «множества всех множеств, не являющихся собственными элементами».
В логическом плане существенно, что при таком подходе определение понятия «множество» перестает быть абстрактным ярлычком, объединяющим общие свойства класса «предметов». Само это определение рассматривается теперь не как имя для иных предметов, а как особый предмет, как особое множество (бесконечное), обладающее в свою очередь некими «свойствами». Теперь выясняется, что определение понятия не только может быть отнесено к самому себе, но что именно в таком самоотнесении (то есть только в понимании определения как «определенности», как предмета определения) понятие имеет смысл, может считаться обоснованным, а не произвольным. Но вся логика обычных, формальных определений и вся логика математического аппарата, при этом используемого, приспособлена была (в XIX веке) для понятий-ярлыков, терминов, для сокращенных наименований некоего иного предмета, иных предметов. Вот логическая основа всех «математических парадоксов». И понятие «множество» здесь только пример, образец, хотя отнюдь не случайный.
Указанный «пример» обнаруживает парадоксальность одного из самых благополучных отношений формальной (не математической) логики – отношения между объемом и содержанием понятия. По сути дела, в понятии «множество» впервые логически определяется (раскрывается) содержание самого понятия «объем понятия». И неожиданно оказывается, что если «объем» бесконечен, то есть если необходимо учитывать не только наличные объекты данного определения, но и возможные, конструируемые – по какой-то схеме – идеализованные объекты (элементы), то тогда сами понятия «объем» и «содержание» будут тождественными и между ними не существует тривиального обратного отношения (чем шире объем, тем уже содержание, и наоборот). Предметы, на которые распространяется данное понятие, коль скоро они взяты в их актуальной бесконечности (как бесконечное множество), не нейтральны, не независимы друг от друга. Между ними есть определенная связь, соединяющая их в мыслимое целое по определенному закону (форме). Эта связь, единство, схема построения и есть как объем, так и содержание самого понятия «множество». Определение такого понятия выступает одновременно как построение особенного, парадоксального предмета (элемента), обладающего способностью полагать себя в качестве бесконечного множества (элементов).
Это и означает, что предмет реализуется в тождестве особенного и всеобщего определения; определение множества относится и к самому «определению» как особенному предмету. Сразу же возникает трудность самоотнесения понятий (понятие должно быть определением самого себя), сразу же рушится вся формальная теория определений и вся формальная теория дедукции.
Парадоксальным (невозможным для эмпирического бытия) оказывается сам предмет определения, взятый как определение предмета (самого себя). Ведь такой предмет должен в то же время и в том же самом отношении быть и особенным (конечным) предметом, и бесконечным всеобщим множеством!
Впрочем, математическая логика давно признала, что суть парадоксов теории множеств не в понятии «множество», но в понятии «понятие». Собственно, математико-логическая переформулировка теоретико-множественных парадоксов и говорит о парадоксе «самоприменимости» «несамоприменимых» понятий. Правда, математическая логика продолжает рассматривать этот парадокс только как формально логический (понятие применимо к себе тогда, и только тогда, когда оно к себе неприменимо) и не видит, что здесь речь идет о переходе формально-логического определения понятий в определение содержательно-логическое, диалектическое. В этой ситуации определение понятия (в процессе его самоотнесения) приходится рассматривать как особый предмет определения. В исходном парадоксе – как особое множество, а в собственно логической идеализации – как парадоксальную (бесконечную) форму бытия особенного (конечного) предмета (к примеру, как движение по бесконечно большой окружности, выступающее определением каждого конкретного инерционного движения).
Нас (автора и читателя) интересует сейчас лишь всеобще-логический смысл «парадоксов теории множеств» (проблема самообоснования). Что касается разрешения этих парадоксов, то это не наше дело, а дело самих математиков и математических логиков. Но все же выскажу несколько соображений и о разрешении парадоксов, но, конечно, только в содержательно-логическом плане. Это будут все те же размышления о проблеме самообоснования логики.
Вспомним еще раз расселовского брадобрея. Когда он бреет самого себя, то… жителя деревни бреет брадобрей. В качестве того, кого бреют, брадобрей принадлежит к множеству жителей поселка (которые не бреются сами), в качестве того, кто бреет, брадобрей относится к совсем иному множеству – брадобреев. При тайком повороте выясняется, что речь идет не о парадоксальности определения одного логического субъекта двумя атрибутами, а о том, что, брея себя, брадобрей выступает (расщепляется) в двойном бытии – брадобрея и жителя, в форме двух логических субъектов. Это во-первых. Во-вторых, брея себя, брадобрей превращает себя (жителя) в брадобрея и превращает себя, брадобрея, – в жителя поселка, который не бреется сам. Брадобрей здесь не только «относится» к двум множествам одновременно; брея себя, он порождает оба множества, определяет их. В момент бритья он возникает как элемент множества «не бреющих себя» и как элемент множества «брадобреев». Конечно, в плане наивной теории множеств он «бреется сам» (относится к множеству «самобреющихся»), но в строго логическом плане существенно его становление (его бытие – в возможности) как брадобреем, так и жителем, которого бреет брадобрей. Брея самого себя (наличное бытие), «он» делает себя небреющим (его бреет брадобрей) и делает себя (осуществляет, реализует себя) в качестве брадобрея. И здесь не просто игра слов или спекуляция на неряшливости исходных определений, как решит формальный логик. Безусловно, я могу сказать, что неопределенное понятие «брадобрей» в парадоксе Рассела скрывает два понятия, два множества (брадобреев и жителей деревни), и если не путать два эти качества нашего Х, то никакого парадокса не будет. Сказать так возможно, и это будет правильно. Но тогда мы не поймем, что за внешней неряшливостью скрывается существеннейший логический момент. Именно по отношению к самому себе понятие брадобрея оказывается не элементом множества, а учредителем, основателем радикально (логически) нового множества.
«Пропущенные через игольное ушко» парадокса, исходные множества преобразовались; они теперь иные множества, становящиеся самими собой в тот момент, когда брадобрей священнодействует, брея самого себя. Брадобрей здесь не «исходный» парикмахер, учрежденный по приказу то ли мэрии, то ли Бертрана Рассела. Тот должен брить, и все. Основная работа нашего брадобрея – порождать (обосновывать) особое множество лиц, не бреющих себя именно в тот момент и именно потому, что и когда они себя бреют, это не множество, это субъект, порождающий множество. Или еще так: множество, порождающее самого себя.
Исходные множества расселовского парадокса (множество не бреющих себя и множество совершающих сей обряд) – это множества обычные, поэлементные, они объединяются воедино только потому, что одинаково («поодиночке») не бреются или бреются. Их определение нейтрально к своему предмету. Но множество (из одного человека), порождаемое брадобреем (коль скоро он себя бреет, то не бреется сам), – это совсем иное множество, больше того, переход к иной теории множеств (шире – к иной логике).
Множество всех множеств, не являющихся своими элементами, не может наличествовать в качестве своего элемента и не может не наличествовать. Оно порождает себя в качестве своего элемента и тем самым порождает себя в качестве множества, не могущего быть своим элементом. Оно не собственный элемент и не «не собственный элемент», оно – потенция того и другого, или, точнее, субъект, формирующий то и другое множества.
Такое множество порождает себя как предмет определения и одновременно как определение предмета. Порождает себя как понятие!
В теории множеств (не только в ней, но сейчас мы продумываем именно эту горячую точку развития математики) произошло исторически определенное самоотнесение коренных логических идеализаций всего теоретического мышления Нового времени, тех особенных предметных идеализаций, которые сделали некогда возможным (необходимым) расщепленное развитие одной логики в двух формах – логики определения и логики доказательства.
Речь идет прежде всего о самоисчерпании (в теории множеств) такой исходной идеализации математического мышления Нового времени, как отождествление (слабое, оппортунистическое) потенциальной бесконечности, бесконечности вывода и определяемой величины (скажем, скорости в данной точке в нулевой промежуток времени).
«Актуальная бесконечность» канторовской теории множеств потребовала непосредственного отождествления бесконечности и конечности, континуальности и дискретности в определении всеобщего «предмета» математической мысли (множества). Это требование означало, далее, необходимость коренного изменения методов дедукции (логики в узком смысле слова), необходимость привести дедукцию в соответствие с радикально «самозамыкающимся», самообосновывающим себя идеализованным предметом.
Чтобы последнее утверждение было ясным, немного о логических предпосылках такой постановки вопроса.
Исходные идеализации каждой особенной логической культуры – всегда формы введения бесконечности в определение конечного, особенного предмета. Логика Нового времени вводит в определение конечного предмета бесконечность (потенциальную) таким образом, что между предметом и его бесконечным «приближенным» измерением всегда остается щель, совпадение оказывается неполным; вычисление (измерение) никогда не может быть до конца тождественным определению. Именно поэтому логика «определения» и логика «вывода» могли существовать раздельно, квазисамостоятельно, и логический вывод никогда не замыкался на содержательное определение, а содержательная теория ничего не подозревала о своем логическом формализме. В таких условиях исходная идеализация (определение) оставалась по ту сторону логического движения; этой идеализации не могло коснуться лезвие логического анализа (между определением идеализованного предмета и логикой дедукции вечно сохранялся зазор). Опасности самообоснования не могли стать реальными логическими проблемами. Исходные «аксиомы», не замыкаясь на себя, великолепно работали «от себя», в расчете тех или иных «физических процессов».
В теории множества такого зазора уже не может быть, идея бесконечного приближения к дискретной величине уже не «срабатывает». «Быка», то бишь дискретное, конечное, особенное, надо сразу же «брать за рога», то бишь за его бесконечное континуальное, всеобщее определение. В конкретной (относительно конкретной) математической теории обнаруживается симптом всеобщего логического кризиса. Идея предмета (линии, числа, «точки») как актуальной бесконечности требует постоянного целенаправленного внимания к проблеме самообоснования логических начал; ведь бесконечность анализа должна теперь изнутри войти в определение конечного предмета.
Характерное для «конструктивизма» понимание «бесконечности» не как наличного «предмета», а как метода (формы) построения (определения) конечных особенных предметов изменяет ситуацию еще радикальнее и требует еще более органичного и осознанного слияния – в единой, небывалой логике – теории вывода и теории определения. Между тем все наличные методы дедуктивного «вывода из…» или «приближения к…» органически не приспособлены к задачам самообоснования понятий.
В парадоксах теории множеств вылез наружу не математический (в узком смысле слова) кризис, а кризис оснований всей логики Нового времени, логики, чье содержание неявно всегда развивалось в русле математических идеализаций. Перед нами – снова – категорический императив логики.
И может быть, наибольшая трудность (неразрешимость) теоретико-множественных парадоксов в том и состоит, что парадоксы эти пытаются решать как узкоматематические или (и) как формально-логические. Между тем эвристическая, творческая сила этих парадоксов обнаруживается только в процессе «сдирания» с них узкоматематической и математико-логической формы и переформулировки их как коренных парадоксов всей логической культуры Нового времени.
Это утверждение следует точно понять. Дело не в том, что «математическая форма» есть какая-то превращенная, неадекватная форма логической культуры мышления Нового времени. Ничего подобного. Форма математического размышления (движение и превращение математических идей) есть наиболее адекватная форма логического движения мысли в XVII – начале XX века. (Другой вопрос: всегда ли для мышления наиболее продуктивна его наиболее адекватная форма?) Но в XX веке возникает необходимость новой логической формы – формы возникновения новой логической культуры. Весь смысл парадоксов теории множеств состоит в этой потенции смены логической формы (и коренного логического содержания) творческого движения мысли.
Парадоксы сигнализируют, что необходим переход от расщепленной формы логического движения (логика определения – логика доказательства) к логике самообоснования.
В логике самообоснования логики (понятия) математика действительно уже не может быть адекватной (всеобщей) формой движения мысли. В логике самообоснования наиболее адекватной является философская форма размышления (критика собственной логики). Вот в чем смысл сформулированного выше утверждения, что творческая сила парадоксов теории множеств обнаруживается в процессе «сдирания» с них узкоматематической формы. Такое «сдирание» есть внутренний замысел этих парадоксов, есть пароксизм превращения философии в адекватную (и осознанную) форму логической культуры (XX века) (8).
Конечно, в математике (или физике) основной императив логики пока еще не сформулирован в адекватной – для логических потенций XX века – всеобщей форме, но он уже предстал в форме такой особенной теоретической проблемы, «решение» которой и состоит в обнаружении ее всеобщности. Непосредственно разговор шел о том виде, который эта проблема приобрела в математике, жаждущей стать философией. Тот же процесс происходит и в физике, но на этих страничках я не буду обсуждать еще и эту проблему.
Надеюсь, что теперь первоначальное наивное недоумение – «да разве позитивные науки так уж остро нуждаются в разрешении трудностей логического обоснования исходных начал теоретического движения, то есть в разрешении трудностей введения в науку логики процессов изобретения новых идей?» – сменилось более серьезными и продуктивными размышлениями. И коренное из них – над проблемой самообоснования логики, самообоснования понятия.
Однако все сказанное выше только начало, только введение в нашу проблему. Теперь мы и подходим к сюжетам нашей настройки.
Понять (и развить) язык теоретического текста как язык самообоснования (самоотнесение понятий) означает понять (и развить) этот один язык как некое двуязычие, как речь внутреннего (внутри единой теории) диалога.
Думаю, что необходимость такого вывода ясна. Необходим один язык, поскольку обращение к метаязыку запрещено во избежание регресса в дурную бесконечность. И одновременно такой язык должен быть для самого себя иным, вторым языком, способным служить формой самообоснования («самоотстранения») исходного теоретического текста.
И наконец, это должен быть язык (речь) внутреннего диалога, в котором осуществляется непрерывное взаимообращение текстов, их полифония, контрапункт, а не просто сосуществование.
Ничего себе, «условия задачи»… Да стоит ли при таких условиях вообще браться за нее? Не проще ли вернуться к старому доброму регрессу в дурную бесконечность превращения аксиом данной теории в теоремы теории более фундаментальной? К тому же, если вспомнить, что «регресс» этот был основой всего научного прогресса в XVIII – начале XX века…
Но… что же все-таки делать с парадоксами обоснования математики и вообще с теми логическими трудностями, о которых речь шла выше? Нет, очевидно, без парадоксальных «условий» не обойтись, а что касается «двуязычия» одной теории, то воспроизведем для бодрости уже приведенные в нашей настройке слова В.Гейзенберга («в порядке общего предположения можно сказать, что в истории человеческого мышления наиболее плодотворными… оказывались те направления, где сталкивались два различных способа мышления») и будем развивать свою проблему дальше. Логический смысл сформулированного только что парадокса раскрывается в той предельной ситуации, когда речь идет о собственно логической теории (о науке логики), а не о какой-то позитивной, пусть самой общей, математической или физической теории.
Логическое обоснование логики (ее исходных положений, начал) требует, чтобы логик взглянул на свое мышление со стороны (а что тут «сторона»? Какое-то другое мышление, что ли, не мое?). Очевидно, здесь может быть лишь один рациональный выход: моя логика должна быть (но может ли?) освоена мной как диалогическое столкновение двух (минимум) радикально различных культур мышления, сопряженных в единой логике – логике спора (диалога) логик. Логик должен быть нетождественным своей логике, должен быть «над» ней, «больше» нее, вне ее. Утверждение, что в «логику» (в непосредственную логику мышления и в науку логики) необходимо включить критерий ее истинности, критерий ее (логики) самообоснования, неизбежно ведет к предположению, к предопределению какой-то «диалогики», какого-то радикального спора, когда каждое из моих «Я» (внутренних собеседников) обладает своей собственной логикой – не «худшей», не «лучшей», не более «истинной», чем логика «другого Я». Но вместе с тем здесь не требуется никакой «металогики» (которая стояла бы где-то над моим спором с самим собой). Не требуется, поскольку само бытие моей логики – в качестве диалогики – определяет ее постоянное развитие: в ответ на реплику внутреннего собеседника «Я» развиваю и коренным образом трансформирую, совершенствую «свою» аргументацию, но то же самое происходит с логикой моего «другого Я» (alter ego). Это постоянное развитие «постоянно» лишь до той точки, где происходит коренное преобразование всей «диалогики» в целом, где формируется новый диалог, новые «действующие лица» внутреннего спора.
Так примерно можно себе представить возможную жизнь диалогического разума… если продумать все последствия идеи самообоснования логической теории. Принять такое предположение как-то не очень хочется. Ведь сразу же возникнут два принципиальных вопроса:
1. Что останется вообще от логики (той железной логики, которая «требует сделать вывод, что…»), если предположить некую полилогичность нашего мышления?
2. Зачем вообще нужна эта «диалогика», эта проверка «логики» «логикой» (и их взаимопревращение), когда существует иная, радикальная проверка: логика проверяется практикой, мышление – бытием? Не является ли это кружение белки мышления в колесе «диалогики» просто-напросто бегством от жизни, от практики, от старой мудрости Гете – «теория друг мой сера, но вечно зелено дерево жизни…»?
Нет, принимать наше предложение явно не следует (риск большой, а толк неясен)… но и не принять как будто нельзя…
- Войдите, чтобы оставлять комментарии