В. Непрерывная и дискретная величина (Kontinuieruche und diskrete Grosse)

Опубликовано smenchsik - ср, 02/08/2012 - 15:34

1. Количество содержит оба момента — непрерывность и дискретность. Оно должно быть положено в обоих моментах как в своих определениях. Оно уже с самого начала их непосредственное единство, т. е. само оно прежде всего положено лишь в одном из своих определений — в непрерывности, и есть, таким образом, непрерывная величина.
Или, иначе говоря, непрерывность есть, правда, один из моментов количества, которое завершено лишь вместе с другим моментом, с дискретностью, однако количество есть конкретное единство лишь постольку, поскольку оно единство различных моментов. Последние следует поэтому брать также и как различенные; мы должны, однако, не вновь разлагать их на притяжение и отталкивание, а брать их согласно их истине, каждый в его единстве с другим, т. е. так, что каждый остается целым. Непрерывность есть лишь связное (zusammenhangende), сплошное единство как единство дискретного; положенная так, она уже не есть только момент, а все количество, непрерывная величина.
2. Непосредственное количество есть непрерывная величина. Но количество не есть вообще нечто непосредственное. Непосредственность — это определенность, снятость которой есть само количество. Последнее следует, стало быть, полагать в имманентной ему определенности, которая есть "одно". Количество есть дискретная величина.
Дискретность подобно непрерывности есть момент количества, но сама она есть также и все количество, именно потому, что она момент в последнем, в целом и, следовательно, как различенное не выступает из этого целого, из своего единства с другим моментом. — Количество есть бытие-вне-друг-друга (Aufiereinan-dersein) в себе, а непрерывная величина есть это бытие-вне-друг-друга как продолжающее себя без отрицания, как в самой себе равная связь. Дискретная же величина есть эта внеположность как не непрерывная, как прерываемая. Однако с этим множеством "одних" у нас снова не получается множество атомов и пустота, вообще отталкивание. Так как дискретная величина есть количество, то сама ее дискретность непрерывна. Эта непрерывность в дискретном состоит в том, что "одни" суть равное друг другу или, иначе говоря, в том, что у них одна и та же единица. Дискретная величина есть, следовательно, внеположность многих "одних" как равных, не многие "одни" вообще, а положенные как "многие" некоторой единицы.
Примечание
[Обычное разъединение этих величин]

В обычных представлениях о непрерывной и дискретной величинах упускают из виду, что каждая из этих величин имеет в себе оба момента, и непрерывность, и дискретность, и их отличие друг от друга составляет только то, какой из двух моментов есть положенная определенность и какой есть только в-себе-сущая определенность. Пространство, время, материя и т. д. суть непрерывные величины, будучи отталкиваниями от самих себя, текучее исхождение из себя, которое в то же время не есть переход или отношение к качественно иному. Они имеют абсолютную возможность, чтобы "одно" повсюду было положено в них, положено не как пустая возможность простого инобытия (как, например, говорят, что возможно, чтобы вместо этого камня стояло дерево), а они содержат принцип "одного" в самих себе; этот принцип — одно из определений, из которых они конституированы.
И наоборот, в дискретной величине не следует упускать из виду непрерывность; этим последним моментом, как показано, служит "одно" как единица.
Непрерывную и дискретную величины можно рассматривать как виды количества, но лишь постольку, поскольку величина положена не какой-нибудь внешней определенностью, а опреде-ленностями ее собственных моментов. Обычный переход от рода к виду вводит в первый — согласно некоторому внешнему ему основанию деления, — внешние определения. Непрерывная и дискретная величины при этом еще не определенные величины; они лишь само количество в каждой из его двух форм. Их называют величинами постольку, поскольку они вообще имеют то общее с определенным количеством, что они суть некоторая определенность в количестве.