(Недопустимость перехода доказательства из одного рода в другой)
Нельзя, следовательно, вести доказательство так, чтобы из одного рода переходить в другой, как, например, нельзя геометрическое положение доказать при помощи арифметики. Ибо в доказательствах различают три (стороны): во-первых, доказываемое, (то есть) заключение, – то, что какому-нибудь роду (предметов) присуще само по себе; во-вторых, основные положения, (то есть) те положения, на основании которых (ведется доказательство); в-третьих, род в качестве подлежащего, состояния которого и его случайные (признаки), сами по себе присущие ему, раскрывает доказательство. Следовательно, (положения), на основании которых ведется доказательство, могут быть одними и теми же, но в (науках), род которых различен, как, например, (род) арифметики и геометрии, не годится арифметическое доказательство для случайных (свойств) величин, если только (эти) величины не являются числами. А как это возможно в отношении некоторых (величин), об этом будет сказано позднее 1. Но арифметическое доказательство всегда имеет дело с тем родом, относительно которого ведется (это) доказательство. И так же обстоит дело с другими (доказательствами). Так что если доказательство должно быть перенесено 2, то род (предметов) должен быть или безусловно тем же или в каком-то отношении (тем же). Ясно, что иначе быть не может, ибо и крайние и средние (термины) необходимо должны быть из одного и того же рода. Если же они сами по себе (не таковы), то они будут случайными (признаками) 3. Ввиду этого посредством геометрии нельзя доказать, что противные друг другу (вещи) изучаются одной и той же наукой и что два куба составляют один куб 4; (вообще) нельзя доказать посредством одной науки (положения) другой, за исключением тех (случаев), когда (науки) так относятся друг к другу, что одна подчинена другой, каково, например, отношение оптики к геометрии и гармонии – к арифметике. Нельзя (доказывать посредством геометрии и тогда), когда нечто присуще линиям не поскольку они суть линии и не поскольку оно (вытекает) из свойственных им начал, как, например, когда прямая линия есть самая красивая из линий или когда она находится в противоположном к окружности положении, ибо (эти признаки) присущи (линиям) не как свойственные их 5 роду, но как нечто общее (и с другими предметами).
__________
1 В конце этой главы и в главе 9.
2 Из сферы одного рода в сферу другого.
3 Подлежащего суждения, или положения.
4 Первое из этих положений составляет предмет доказательства в философии (см. Аристотель, Метафизика), второе – в арифметике (произведение двух кубических чисел есть кубическое число).
5 Линиям.
- Войдите, чтобы оставлять комментарии